Topic: Cryomodule

"Options for a Highly Reliable Spoke Linac"

J-L. Biarrotte – IPN Orsay

About the reliability issue

XADS linac specifications: less than 5 beam trips (>1s) per year !!!

- **Over-design** and **redundancy** are very important criteria to follow in the linac design
- **High accessibility** is required for repairing or substitution "on-line", without interrupting the beam
- The linac must tolerate the failure of most of the components: a "fault-tolerant" design has to be ensure whenever possible...

Basic choices for a reliable & fault-tolerant design

• Focusing design

⇒ Small independent modules: lattice length continuity, modularity, simplicity

⇒ **SC quadrupole doublets:** more matching capability than solenoids

Cavities

 \Rightarrow small number of gaps (2): higher energy acceptance, higher capability for fault-tolerance, simplicity

Beam dynamics

- \Rightarrow Capture at 5 MeV: synchronous phase ramped from -65° to -30°
- \Rightarrow Limit the accelerating gradient (thus σ) per focusing lattice: 2-gap is far enough, and 1 (resp. 2) cavity per focusing lattice in the β =0.15 (resp. 0.35) section

& even the 2-gap case needs gradient limitations...

Proposal for a 5-95 MeV Spoke Proton Linac

Beam intensity: 10 mA CW	"β=0.15" section	"β=0.35" section
Energy range (MeV)	5 – 17	17 – 95
# Cavities	34	62
# Cavities per focusing lattice	1	2
Focusing lattice length (m)	1.3	1.9
Synchronous phase	- 65° to - 30°	- 30°
Energy gain per real meter (MeV/m)	0.06 – 0.38	0.31 – 1.58
Beam loading RF power (kW/cavity)	0.8 - 5.0	4.1 – 15.0
Quadrupole gradient (T/m)	17 – 24	24 – 35
Overall length (m)	44.2	58.9

Advantages towards the reliability issue

- 2-gaps cavities, independently powered
- Large beam apertures (>50mm)
- Very smooth and safe focusing design
- Modular & simple structures
- Possibility of intrinsically redundant design
- Fault tolerance capability

BUT... not very efficient in terms of real gradient between 5 & 25 MeV (β =0.15 section)

β =0.15 Spoke Cryomodule Prototyping (1)

- 2.4 m long & 1 m diameter
- Including two 350 MHz spoke cavities
- Classical 4 K, 1 atm He bath
- Independent RF powering
 (≤5kW/cavity) using coaxial lines
- Focusing using two SC quadrupole doublets

SC « superferric » quadrupole (MSU-LNL)

β =0.15 Spoke Cryomodule Prototyping (2)

- Cold Tuning System: "SOLEIL-like"; efforts are applied on the flanges via Ti rods
- **Alignment** possible from the outside using 8 epoxy supports

- **Assembly**: 2 options are foreseen (whole mounting in a clean room or not)
- Thermal shielding: 2 options are foreseen (80 K circuit & multilayer insulation)

Conclusion & perspectives

- The **preliminary design of a** β =0.15 module has began, and tries to fit with the XADS reliability requirements
- The aim = fabrication of a first prototype of cryomodule, which allows to test a few **different technological options**

The future =

- Test with beam (IPHI) without the need of a specific matching section
- Campaign for testing the reliability of all the components

